Runtime Analysis of Crowding Mechanisms for Multimodal Optimization
نویسندگان
چکیده
منابع مشابه
Artificial Weed Colonies with Neighbourhood Crowding Scheme for Multimodal Optimization
Multimodal optimization is used to find multiple global & local optima which is very useful in many real world optimization problems. But often evolutionary algorithms fail to locate multiple optima as required by the system. Also they fail to store those optima by themselves. So we have to use other selection scheme that can detect & store multiple optima along with evolutionary algorithms. He...
متن کاملCrowding clustering genetic algorithm for multimodal function optimization
Interest in multimodal function optimization is expanding rapidly since real-world optimization problems often require location of multiple optima in a search space. In this paper, we propose a novel genetic algorithm which combines crowding and clustering for multimodal function optimization, and analyze convergence properties of the algorithm. The crowding clustering genetic algorithm employs...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولRuntime Support of Speculative Optimization for Offline Escape Analysis
Escape analysis can improve the speed and memory efficiency of garbage collected languages by allocating objects to the call stack, but an offline analysis will potentially interfere with dynamic class loading and an online analysis must sacrifice precision for speed. We describe a technique that permits the safe use of aggressive, speculative offline escape analysis in programs potentially loa...
متن کاملRuntime Analysis of Probabilistic Crowding and Restricted Tournament Selection for Bimodal Optimisation
Many real optimisation problems lead to multimodal domains and so require the identification of multiple optima. Niching methods have been developed to maintain the population diversity, to investigate many peaks in parallel and to reduce the effect of genetic drift. Using rigorous runtime analysis, we analyse for the first time two well known niching methods: probabilistic crowding and restric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2020
ISSN: 1089-778X,1089-778X,1941-0026
DOI: 10.1109/tevc.2019.2914606